
Attacking White-Box AES Constructions

Brendan McMillion
CloudFlare, Inc.

brendan@cloudflare.com

Nick Sullivan
CloudFlare, Inc.

nick@cloudflare.com

ABSTRACT
A white-box implementation of the Advanced Encryption
Standard (AES) is a software implementation which aims
to prevent recovery of the block cipher’s master secret key.
This paper refines the design criteria for white-box AES con-
structions by describing new attacks on past proposals which
are conceptually very simple and introduces a new family of
white-box AES constructions. Our attacks have a decom-
position phase, followed by a disambiguation phase. The
decomposition phase applies an SASAS-style cryptanalysis
to convert the implementation into a simpler form, while
the disambiguation phase converts the simpler form into a
unique canonical form. It’s then trivial to recover the mas-
ter secret key of the implementation from its canonical form.
We move on to discuss the hardness of SPN disambiguation
as a problem on its own, and how to construct white-boxes
from it. Implementations of all described attacks and con-
structions are provided on GitHub at

https://github.com/OpenWhiteBox/

CCS Concepts
•Security and privacy→ Block and stream ciphers; Crypt-
analysis and other attacks;

Keywords
AES, white-box, self-equivalences

1. INTRODUCTION
White-Box Cryptography is the study of securing block ci-

phers in the white-box attack context, where an adversary
obtains an implementation of the algorithm and is allowed
to observe/alter every step of its execution (with instanti-
ated cryptographic keys). The goal is to prevent recovery of
the cipher’s master secret key, thus forcing the adversary to
use an implementation which may be defective. Either by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SPORO’16, October 28 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4576-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2995306.2995314

being prohibitively expensive to evaluate or giving invalid
input/output pairs in a controlled way.

A system designer may wish to deploy a white-box imple-
mentation instead of a standard one to lower the risks associ-
ated with code lifting and key compromise. The white-box
can be combined with other parts of the system in a way
which is difficult to decouple, and its functionality may be
heavily restricted. Most effort in the field has been dedicated
to studying implementations of AES, for compatibility with
legacy systems or the hardening thereof [7].

Unfortunately, efficient attacks have been described against
all published constructions. These attacks were developed
independently and are not immediately related. There has
been one past effort to generalize these attacks by Michiels
et al. in [9]. We continue their work by developing concep-
tually simpler attacks and discussing their implications to
white-box design.

Section 2 contains mathematical preliminaries. Section 3
develops the generic SPN representation of AES which is
well-known to cryptanalysts. Sections 4-6 describe attacks
against the two most influential white-box AES construc-
tions. Sections 7-9 investigate strategies for stronger white-
box designs.

2. MATHEMATICAL PRELIMINARIES
An affine transformation from n-bits to n-bits is written

as A(x) = Mx+c. M is the linear part and c is the constant
part. Given an n-bit bijection f , and an m-bit bijection g,
f || g denotes the (n + m)-bit bijection (f || g)(x || y) =
f(x) || g(y). If c ∈ F28 is a constant, then [c] ∈ F8×8

2 denotes
the matrix of multiplication by c. By F28 , we will always
mean Rijndael’s field.

2.1 Parasitic Functions
In the expression b−1 ◦ f ◦ a, where b, f, a are n-bit bijec-

tions, we call a and b parasites of f . a and b are usually
understood to be elements of a distinguished subgroup P of
the bijections on n-bits, such as the invertible linear or affine
transformations.

A pair of parasites (a, b) ∈ P × P such that f ◦ a = b ◦ f
is called a P self-equivalence of f . The set of all (a, b) pairs
that satisfy this relation are called the P group of f (or
the parasitic group when we speak generally), because they
form the product group of two isomorphic subgroups of P .
Alternatively, a pair (a, b) such that f ◦a = b◦g is called a P -
equivalence of f and g, and information about the P group
of f or g gives more P -equivalences, and information about
the P group of the other function [8]. It is straightforward

https://github.com/OpenWhiteBox/
http://dx.doi.org/10.1145/2995306.2995314

to generalize any of these ideas to non-bijective functions.

3. ADVANCED ENCRYPTION STANDARD
The typical algorithm for encrypting with AES is not

always the best for studying the cipher because its sub-
routines, AddRoundKey, SubBytes, etc., appear atomic even
though many of them are completely linear and therefore
interact heavily.

In contrast to this, the study of structural cryptanalysis
strips all semantic content and describes constructions only
as the composition of functions from special families. The
generalization offered for substitution-permutation networks
(SPNs) is interleaved affine and S-box layers. An affine layer,
denoted by an A, treats its input as an element of Fn

2 and ap-
plies a fixed, invertible affine transformation over this space.
An S-box layer, denoted by S, applies possibly independent
m-bit S-boxes to consecutive chunks of its input; we assume
S-boxes are arbitrary bijections throughout the paper. We
can concisely represent a cipher’s structure by concatenat-
ing these identifiers – for example, ASAS implies a function
E = A2 ◦ S2 ◦A1 ◦ S1.

Let’s find the generalized form of AES, starting with its
subroutines:

AddRoundKey Add a round key from F128
2 to the block. (A)

MixColumns Apply an F28 -linear transformation to each word
of the block. (A)

SubBytes Invert each byte as an element of F28 and apply
an affine transformation. (AS)

ShiftRows Permute the bytes of each block. (A)

Composing them, according to AES’s specification, results
in a large cascade of the shape . . . AASAA, but for clarity
we collapse neighboring affine layers until the two kinds al-
ternate. We’re left with a function in ASASA . . . ASASA
form, with 10 S-box and 11 affine layers. We call this AES’s
generic SPN representation. It’s interesting to note that
only the constant part of each affine layer is key dependent
– everything else is public.

The first three images in Figure 1 visualize the linear part
of each subroutine’s affine layer – SubBytes1 is dense but
byte-wise independent, while ShiftRows is simply a permu-
tation matrix. MixColumns is the F2-matrix representation
of multiplication by elements of F28 . The final matrix on
the right is

Ai = AddRoundKeyi ◦ MixColumns ◦ ShiftRows ◦ SubBytes
1

that is, the linear part of every intermediate affine layer of
AES when written in generic form. The first affine layer of
the cascade is simply AddRoundKey0 and the last is

AddRoundKey10 ◦ ShiftRows ◦ SubBytes
1

[4].

4. PAST CONSTRUCTIONS
The white-box AES constructions of [7] and [11] compute

AES encryption with a network of lookup tables. An arc
from one table T to another T ′ means that (part of) the

1The affine layer of SubBytes only.

output of T is used as (part of) the input to table T ′. The
exact construction of the tables is very complicated and not
very insightful so we describe it only as necessary.

The tables in the network are encoded, meaning that the
output of each has been randomly masked somehow and
the tables it inputs to have been adjusted so as not to
break overall functionality. As constructed, this typically
only hides low-level information such as the exact bits that
are being computed on at a given point. It does not mask
the high-level information of multiset properties and round
boundaries. Because of this, we can pick out sections of the
network which correspond to one or two consecutive rounds.
This will necessarily have a small SPN structure which we
can decompose into its individual layers with the techniques
of Biryukov and Shamir from [4].

One round of AES has the structure AS. Chow et al. ob-
fuscate the network by adding random non-linear maps to
the tables’ inputs and outputs, meaning the structure of one
round in their construction is S(AS)S = SAS. Xiao and Lai
take the complementary approach by adding linear maps to
the input and output of all tables, making the round struc-
ture A(AS)A = ASA. These pose no problem, as [4] describes
practical attacks against structures as large as SASAS.

This decomposed SPN is unlikely to be correct because
generic SPNs have a large number of equivalent represen-
tations. We derive the canonical representation in a more
ad-hoc way than we decomposed the network, but show that
it is still easy.

5. CRYPTANALYSIS OF CHOW ET AL.
For each round, the construction of Chow et al. produces

a network which computes

Ri := Qi ◦ MixColumns ◦ SubBytes ◦ AddRoundKeyi ◦ Pi

for 0 ≤ i ≤ 10, where the input encoding Pi and the output
encoding Qi apply 32 independent, random 4-bit S-boxes
to the state array; to allow transparent composition, each
round’s input encoding inverts the previous output encod-
ing, Pi = Q−1

i−1. P0 and Q10 are called external encodings
and are arbitrary (normally affine) transformations.

Note that the round structure is slightly out of order. Be-
fore, ShiftRows would’ve been between SubBytes and Mix-

Columns. We’ve pushed ShiftRows to the front of each round
and adjusted the the round key appropriately.

For the decomposition phase of the attack, we decompose
two consecutive rounds into their component layers with an
SAS cryptanalysis, assuming 8-bit S-boxes. The trailing S-
boxes of the first round are composed with the leading S-
boxes of the second round to form a middle S-box layer.

We now move to the disambiguation phase of the attack.
The linear part of the remnant affine layers looks something
like Figure 2, assuming we choose MixColumns to be the
‘correct’ affine layer (instead of combining MixColumns with
the affine part of SubBytes). A trick from [1] can partially
recover the left and right parasites of each 32 × 32 block
along the diagonal. The trick consists of observing that these
blocks are equal to
b1

b2
b3

b4

◦

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

◦

a1

a2
a3

a4


where the parasites ai and bi are random, invertible 8 ×

SubBytes ShiftRows MixColumns One Full Affine Layer

Figure 1: The linear part of AES’s subroutines and the linear part of their composition. They’re shown as
128 × 128 F2-matrices, where a white pixel is a zero and a black pixel is a one. For reference: the ShiftRows

matrix is sixteen 8× 8 identities, shuffled.

Affine Layer

=

Left Parasite

◦

MixColumns

◦

Right Parasite

Figure 2: The affine layer recovered from the decomposition phase of attacking Chow et al.’s white-box AES
construction and its proper disambiguation.

8 matrices, making each 8 × 8 sub-block of the composed
matrix of the form bi ◦ u ◦ aj . From this, we can compute

(bn ◦ v ◦ ai) ◦ (bm ◦ w ◦ ai)−1 ◦ (bm ◦ x ◦ aj) ◦ (bn ◦ y ◦ aj)−1

= bn ◦ z ◦ b−1
n = L

as long as i 6= j and n 6= m (a slight modification will find
an L for a given ai). The equation L◦ b′n = b′n ◦z will give a
singular system of 64 linear equations in 64 unknowns. We
then derive a basis of the system’s nullspace and search it
for an invertible solution b′n which will be correct up to an
unknown scalar in each 32 × 32 block along the diagonal.
For both affine layers, we push their constant part and the
recovered parasites into the S-box layers on either side.

Both affine layers are now correct; the S-box layers are
determined up to Pi, Qi+1, 8 unknown scalars from F28 ,
and two 128-bit constants. The jth S-box in the middle
layer equals abj/4c · SubByte(cbj/4c · x + dj) + bj . These
constants are unique and can be found either by brute force
or with a variant of the affine equivalence algorithm. Once
found, we remove them from the middle S-box layer and
their counterparts on the first and last S-box layers.

Both affine layers and the middle S-box layer are correct;
the first and last S-box layers are determined up to Pi, Qi+1,
and two 128-bit constants. The jth S-box in the first layer
equals k′j + SubByte(Pi,j(x)). To verify a guess for k′j , we
recall that the Pi,j also have an AS structure, with two 4-bit
S-boxes and an 8× 8 affine layer. Therefore, it must always
satisfy

{0,1}4⊕
x

Pi,j(0
4 || x)

?
= 0 and

{0,1}4⊕
x

Pi,j(x || 04)
?
= 0

because the ⊕ of the codebook of any 4-bit bijection must be
zero and the outer affine layer does not affect this property.
If stripping the S-box of k′j and SubByte results in a function
which satisfies this relation, we consider k′j a solution. This

is just a heuristic, but it is reasonably efficient and accurate
enough to uniquely identify a round key.

Remark 1. Given only an ensemble of rounds {Ri}i∈I
such that there are no consecutive rounds (i ∈ I =⇒ i+1 /∈
I), no adversary can recover the key.

Remark 2. Our implementation takes around a second
to generate an instance of this construction (800KB in size)
and less than thirty seconds to recover the master key from
an instance, running on consumer hardware.

6. CRYPTANALYSIS OF XIAO AND LAI
For each round, the construction of Xiao and Lai produces

a network which computes

Ri := Qi ◦ MixColumns ◦ SubBytes ◦ AddRoundKeyi ◦ Pi

for 0 ≤ i ≤ 10, where Pi and Qi are 128 × 128 invertible
matrices, Pi with random 16× 16 blocks along the diagonal
and Qi with random 32×32 blocks along the diagonal. Each
round also has a matrix Mi = P−1

i ◦ShiftRows◦Q
−1
i−1 which

simultaneously re-encodes the state array and permutes it.
Once again, the round structure is slightly out of order–this
is for the same reason as before.

The structure of the tables for each round is ASA. Qi ◦
MixColumns is the trailing affine layer, AddRoundKeyi ◦ Pi is
the leading affine layer, and SubBytes is the S-box layer.
We can apply a variant of the previous attack–that is, de-
compose two consecutive rounds and disambiguate the space
between them. There is a more interesting way, though:

The decomposition phase of the attack splits one round
into its component layers, Ri = A2

i ◦ Si ◦A1
i .

We now move to the disambiguation phase of the attack.
A2

i should be exactly linear, as it is in the canonical decom-
position – if the structural cryptanalysis leaves A2

i with a
non-zero constant part, we merge into Si. The structural

cryptanalysis may have also permuted the S-boxes unneces-
sarily; we can undo most of this by permuting S-boxes until
A1

i has 16×16 blocks along the diagonal and A2
i has 32×32

blocks along the diagonal.
Each S-box is equal to b−1◦SubByte◦a, where a is an 8×8

affine transformation, and b is an 8 × 8 linear transforma-
tion. We can whiten SubByte by redefining it as SubByte′ =
SubByte ◦ ⊕52 so that SubByte′(00) = 00. We whiten the
S-boxes similarly, by finding the input that maps to zero
and setting it as an ⊕-mask on the input. This makes each
S-box equal to d−1 ◦ SubByte′ ◦ c, where c and d are 8 × 8
linear transformations. We use the linear equivalence algo-
rithm from [3] to derive the set of 8 candidate solutions for
c, d (which is much more efficient than applying the affine
equivalence algorithm of the same paper to b−1◦SubByte◦a).
However, the large random blocks of Qi will hide which of
the 8 solutions is correct, so we need to redefine A2

i ,

A2′
i := Mi+1 ◦A2

i = P−1
i+1 ◦ ShiftRows ◦ MixColumns ◦ . . .

so that the smaller blocks of P−1
i+1 (spread out by ShiftRows)

will leak the information we need; see Figure 3.
Once the correct c, d for each S-box has been recovered

and moved into the affine layers, the construction will be
completely disambiguated. The round key is the constant
part of A1

i .

Remark 3. Given only an ensemble of rounds {Ri}i∈I
and an ensemble of ShiftRows matrices {Mj}j∈J such that
j ∈ J =⇒ j − 1 /∈ I, no adversary can recover the key.

Remark 4. Our implementation takes less than a minute
to generate an instance of this construction (21MB in size)
and less than a minute to recover the master key from an
instance, running on consumer hardware.

7. NEW CONSTRUCTIONS
Structural cryptanalysis has been very successful at de-

composing small SPN structures, and in general it doesn’t
seem possible to represent an arbitrary SPN structure as
anything other than an SPN. For example, even the large
ASASA white-box described in [2] suffers from very efficient
decomposition attacks. A natural research direction, then, is
to explore how to hide a white-box’s canonical secret key in-
side a functionally-equivalent SPN representation where the
problem of disambiguation is designed to be hard, rather
than decomposition.

8. TOY CONSTRUCTION
As an initial attempt in the new design space, we de-

scribe a white-box construction which is an ‘optimally hard’
instance of the disambiguation problem for SPNs computing
AES encryption. We then show that this construction is as
weak as any of its predecessors.

Take an SPN computing AES encryption as input. We
choose to leave the S-box layer of the SPN as the function
ζ(x) = x−1 ∈ F28 (the nonlinear part of SubBytes) concate-
nated sixteen times. There is no gain in generating S-boxes
which are affine-equivalent to ζ and compensating for the
error in the affine layer of the SPN. The algorithms of [3]
can simply be used to convert them back, and the affine-
equivalence will be recovered up to the group of ζ. This

implies that our white-box generation algorithm must con-
sist of teleporting information from one affine layer to the
next, in the form of self-equivalences of the S-box layer.

In the same paper, Biryukov et al. find that the affine
group of ζ contains 2,040 elements and derive a closed-form
representation of them:

ζ ◦ ([c] ◦Qi) = ([c−1] ◦Q−i) ◦ ζ

where c ∈ F∗28 is an arbitrary constant and Qi is the Frobe-
nius endomorphism (squaring) applied 0 ≤ i < 8 times2.

For each S-box layer Si of the SPN, sample a 128 × 128
binary matrix P which permutes the bytes of its input, and
sixteen pairs (c, i), (d, j), (e, k), . . . ∈ F∗28 × Z8. Set

a := P ◦ diagonal([c] ◦Qi, [d] ◦Qj , [e] ◦Qk, . . .)

b := P ◦ diagonal([c−1] ◦Q−i, [d−1] ◦Q−j , [e−1] ◦Q−k, . . .)

Because (a, b) is a self-equivalence of Si, we get a non-
trivial cancellation law Si = b−1 ◦ Si ◦ a for linear functions
a, b. Recalling that the SPN is written as A11 ◦ . . .◦A2 ◦S1 ◦
A1, we redefine Ai+i := Ai+1 ◦ b−1 and Ai := a ◦Ai.

After doing this to all S-box layers, the overall effect is
that the S-box layers are left unaltered while the affine layers
have their input and output mixed (which includes mixing
of the key material, in the constant part of the affine layers):

(A11 ◦ b−1
10) ◦ S10 ◦ . . . ◦ (a2 ◦A2 ◦ b−1

1) ◦ S1 ◦ (a1 ◦A1)

To prevent a trivial key-recovery attack, we set b−1
0 and

a11 to be random affine transformations. The set of affine
layers {ai ◦ Ai ◦ b−1

i−1}i=1,...,11 is the public output of our

white-box generation algorithm and b−1
0 and a11 are the pri-

vate outputs. This idea was originally described in [3] as a
method for generating dual Rijndaels.

8.1 Cryptanalysis of the Toy Construction
First, we need to identify and remove the self-equivalences

of ζ from an affine layer. The affine layers of AES have
only four distinct 8 × 8 blocks, written in closed-form as
[c] ◦ SubBytes1 for c ∈ {00, 01, 02, 03} ⊂ F28 . However, the
affine layers of the toy construction can have a large number
of distinct 8× 8 blocks:

[b] ◦Qj ◦ SubBytes1 ◦Qi ◦ [a]

for any a, b ∈ F28 and 0 ≤ i, j < 8. The values a, b, i, j
are uniquely determined and can be quickly found by brute-
force. Even though b = b′c masks the correct value of c ∈
{00, 01, 02, 03} for a block, if we can find the value of a in
the subsequent affine layer then this will be equal to b′.

Once the self-equivalences of ζ are gone, the 8× 8 blocks
of the affine layer will still be permuted arbitrarily. We fix
this with a simple bounded search algorithm, which leaves
the linear part of the affine layer the same as in Figure 1.

What we’ve described so far is a specialized way of solving
the linear equivalence problem for matrices, as studied in [9].
This is not enough though, because the constant part of the
recovered affine layer is not going to be the round key. The
affine layer of AES has a certain group under permutation,
and the constant part of the affine layer will be the round
key permuted by a random element of this group.

Say that we have been disambiguating the ith affine layer
of the white-box, A′i = p−1

i ◦Ai ◦ pi−1, where we’ve manipu-
lated the original parasites ai, b

−1
i−1 into an element (pi−1, pi)

2Since Q8 = I, Q−i = Q8−i.

A
i

2’

=

M
i+1

◦

A
i

2

=

P
-1

i+1

◦

ShiftRows

◦

MixColumns

◦

Right Parasite

Figure 3: An affine layer encountered in the cryptanalysis of Xiao and Lai’s construction and its proper
dismabiguation. The right parasite transposes neighboring S-boxes randomly; its 8 × 8 blocks are random
self-equivalences of the S-boxes.

of the permutation group of Ai. The constant part of A′i is
p−1
i (ki ⊕ d) where ki is the ith round key and d is a known

constant, and the constant part of A′i+1 = ai+1 ◦ Ai+1 ◦ pi
is ai+1(ki+1 ⊕ d).

By guessing pi, we define ki as well as ai+1, and therefore
ki+1. This guess is considered consistent if ki+1 is the result
of applying a key schedule to ki. This determines the correct
pair (ki, ki+1) and therefore the correct master key k0. The
authors are currently unaware of a faster way to achieve this.

The permutation group of AES’s affine layer has 44×4! ≈
212 elements which need to be considered, corresponding to
a cyclic rotation of each 8× 8 block of MixColumns and any
permutation of the four 32× 32 blocks along the diagonal.

Remark 5. Our implementation takes less than a second
to generate an instance of this construction (23KB in size)
and less than a minute to recover the master key from an
instance, running on consumer hardware.

9. DECOMPOSITION OF ζ

The failure of the toy construction shows that the com-
mon SPN representation of AES is not at all amenable to
white-box representations. To get around this, we propose
to replace the S-box layer with a decomposition, or a (possi-
bly multi-layer) SPN with smaller S-boxes which computes
the same function as the original S-box layer. This preserves
functionality and the smaller, simpler S-boxes will necessar-
ily have richer affine groups.

We can then go through each S-box layer and rewrite the
affine layers on either side with random self-equivalences as
we did in the toy construction. Once this is done, it doesn’t
seem easy to convert the S-boxes back to their original form
because they are more heavily mixed with the neighboring
affine layers and even their nearest S-boxes. One would also
hope that the richer affine group would mask the algebraic
structure of the affine layer which was useful in cryptana-
lyzing the toy construction.

We are aware of only one suitable decomposition, pub-
lished by Canright [6]. It is motivated as follows. Elements
of the field F28 are typically represented as seventh-degree
polynomials modulo an eight-degree polynomial, with co-
efficients from F2. However, they can also be represented
as first-degree polynomials modulo a second-degree polyno-
mial, with coefficients from F24 .

More generally, if we take an element of c ∈ F2n with a
polynomial basis defined by the irreducible f(x) = x2+τx+
ν with τ, ν ∈ F2n/2 , then c is written as c1x+c0. The inverse

of c is given by

(c1x+ c0)−1 = [θ−1c1]x+ [θ−1(c0 + c1τ)]

where θ = c21ν + c1c0τ + c20

This can be represented as an SPN with (non-invertible)
affine layers computing multiplications by constants and ad-
ditions, and (non-invertible) S-box layers computing multi-
plications between two variables and inversions. We decom-
pose inversion in F28 recursively until all S-boxes are either
identities or multiplication by elements of F2, i.e. AND gates.
The final result is an SPN with five A layers and four S
layers.

Affine Group.
We want the equation AND ◦ a = b ◦ AND to hold when

a, b are affine transformations. b must always be the 1 × 1
identity. The linear part of a can be any 2 × 2 invertible
matrix. The constant part of a must be a 1-bit at the ith

position if the ith row of the linear part has two 1-bits and
0 otherwise. This implies the following equations and their
commuted versions:

xy = xy (x+ y + 1)y = xy x(x+ y + 1) = xy

.

Remark 6. Our implementation takes less than a second
to generate an instance of this construction (100KB in size),
running on consumer hardware.

9.1 Security Against Various Attacks
Decomposition attacks – including differential and linear

cryptanalysis – don’t seem to be applicable to the crypt-
analysis of this construction because they can only output
another instance of the dismabiguation problem. It should
almost always be easier to directly inspect the affine layers.

Along these lines, the linear equivalence algorithm for ma-
trices presented by Michiels et al. in [9] only constitutes a
partial cryptanalysis. This algorithm quickly exhausts the
amount of information that can be learned by inspecting
individual affine layers but doesn’t allow round keys to be
recovered because the self-equivalences of the affine layer
continue to mask it.

Lastly, we note that the addition of random affine trans-
formations b−1

0 and a11 protect the white-box against simple
attacks based on its structure as well as against the DCA
and DFA attacks of [5]. To successfully attack a white-box
with DCA or DFA, the attacker must know the ‘real’ input
or output of the white-box, not the masked values. This
ends up being a significant constraint in practice, because it

means that ciphertexts must be encoded (and plaintexts de-
coded) somewhere the the adversary does not control and he
also can’t have partial information about the plaintexts and
ciphertexts that might allow him to learn a11 and b−1

0 . A vi-
able remaining application of white-boxes is key distribution
architecture, where keys are generated uniform randomly
and wrapped by a trusted party and distributed/unwrapped
throughout an untrusted network. [10]

10. CONCLUSION
We presented two new attacks on past white-box AES

constructions, which we believe are conceptually simple and
give actionable insight into the proper design of white-box
constructions. This leads us to propose one construction
which is easily broken, and another whose security level
is unknown. Further research may look for more fruitful
decompositions of the S-box layer or ciphers such as BES,
which contain AES but have more symmetry.

11. REFERENCES
[1] O. Billet, H. Gilbert, and C. Ech-Chatbi.

Cryptanalysis of a white box AES implementation. In
H. Handschuh and M. Hasan, editors, Selected Areas
in Cryptography, volume 3357 of Lecture Notes in
Computer Science, pages 227–240. Springer Berlin
Heidelberg, 2005.

[2] A. Biryukov, C. Bouillaguet, and D. Khovratovich.
Cryptographic Schemes Based on the ASASA
Structure: Black-Box, White-Box, and Public-Key
(Extended Abstract), pages 63–84. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[3] A. Biryukov, C. De Cannière, A. Braeken, and
B. Preneel. A Toolbox for Cryptanalysis: Linear and
Affine Equivalence Algorithms, pages 33–50. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

[4] A. Biryukov and A. Shamir. Structural cryptanalysis
of SASAS. Journal of Cryptology, 23(4):505–518, 2010.

[5] J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen.
Differential computation analysis: Hiding your
white-box designs is not enough. Cryptology ePrint
Archive, Report 2015/753, 2015.
http://eprint.iacr.org/2015/753.

[6] D. Canright. A very compact S-box for AES. In
International Workshop on Cryptographic Hardware
and Embedded Systems, pages 441–455. Springer, 2005.

[7] S. Chow, P. Eisen, H. Johnson, and P. C.
Van Oorschot. White-box cryptography and an AES
implementation. In K. Nyberg and H. Heys, editors,
Selected Areas in Cryptography, volume 2595 of
Lecture Notes in Computer Science, pages 250–270.
Springer Berlin Heidelberg, 2003.

[8] C. Lorens. Invertible boolean functions. Electronic
Computers, IEEE Transactions on, EC-13(5):529–541,
Oct 1964.

[9] W. Michiels, P. Gorissen, and H. D. Hollmann.
Cryptanalysis of a generic class of white-box
implementations. In R. M. Avanzi, L. Keliher, and
F. Sica, editors, Selected Areas in Cryptography, pages
414–428. Springer-Verlag, Berlin, Heidelberg, 2009.

[10] P. Teuwen. private communication, 2016.

[11] Y. Xiao and X. Lai. A secure implementation of
white-box AES, 2009.

http://eprint.iacr.org/2015/753

	Introduction
	Mathematical Preliminaries
	Parasitic Functions

	Advanced Encryption Standard
	Past Constructions
	Cryptanalysis of Chow et al.
	Cryptanalysis of Xiao and Lai
	New Constructions
	Toy Construction
	Cryptanalysis of the Toy Construction

	Decomposition of
	Security Against Various Attacks

	Conclusion
	References

